Divisors of Mersenne Numbers

By Samuel S. Wagstaff, Jr.*

Abstract

We add to the heuristic and empirical evidence for a conjecture of Gillies about the distribution of the prime divisors of Mersenne numbers. We list some large prime divisors of Mersenne numbers M_{p} in the range $17000<p<10^{5}$.

1. Introduction. In 1964, Gillies [6] made the following conjecture about the distribution of prime divisors of Mersenne numbers $M_{p}=2^{p}-1$:

Conjecture. If $A<B \leqslant \sqrt{M_{p}}$, as B / A and $M_{p} \rightarrow \infty$, the number of prime divisors of M_{p} in the interval $[A, B]$ is Poisson distributed with mean $\approx \log ((\log B) / \log (\max (A, 2 p)))$.

He noted that his conjecture would imply that
(i) The number of Mersenne primes $\leqslant x$ is about $(2 / \log 2) \log \log x$.
(ii) The expected number of Mersenne primes M_{p} with p between x and $2 x$ is 2 .
(iii) The probability that M_{p} is prime is about $2 \log 2 p / p \log 2$.

He supported his conjecture with a heuristic argument and empirical data. Ehrman [5] sharpened Gillies' conjecture slightly and supplied more empirical evidence. The present paper strengthens the heuristic argument and adds to the empirical data in support of the conjecture.

Consequence (iii) follows from the conjecture by taking $A=2 p$ and $B=M_{p}^{1 / 2}$. The first two consequences follow easily from the third. Lenstra [8] has objected that one is not entitled to take B as large as $M_{p}^{1 / 2}$ in the conjecture because similar reasoning leads to a contradiction with the prime number theorem. We discuss Lenstra's objection.

The paper concludes with a table of large prime divisors of some Mersenne numbers and a table of some primes between 50000 and 100000 for which no prime divisors of M_{p} are known.
2. The Heuristic Argument. It is well known that all divisors of M_{p} have the form $q=2 k p+1$, where $k \equiv 0$ or $-p(\bmod 4)$. How often is such a q prime? When q is prime, what are its chances of dividing M_{p} ? The first question is answered heuristically by the Bateman-Horn conjecture [1] which is consistent with the prime number

[^0]theorem and which is believed by many mathematicians. According to that conjecture, for each k the number of $p \leqslant x$ for which both p and $2 k p+1$ are prime is asymptotically
$$
2 \prod_{\substack{q \text { odd } \\ \text { prime }}}\left(1-\frac{1}{(q-1)^{2}}\right) \cdot \prod_{\substack{q \mid 2 k \\ q \text { odd prime }}} \frac{q-1}{q-2} \cdot \frac{x}{(\log x) \log (2 k x)} .
$$
(See also (7) of [11] and compare with [3], [4] and [10].) Write C_{2} for the first product and $f(2 k)$ for the second one. Thus, if we are given that p is prime, then for fixed k the probability that $2 k p+1$ is also prime is about $2 C_{2} f(2 k) / \log (2 k p)$.

Now suppose p is prime, k is a positive integer, $q=2 k p+1$ is prime, and $k \equiv 0$ or $-p(\bmod 4)$. Shanks and Kravitz [11] present this good heuristic argument that $q \mid M_{p}$ with probability $1 / k$: Let g be a primitive root of q. The congruence satisfied by k insures that $2 k p+1 \equiv \pm 1(\bmod 8)$. Hence, 2 is a quadratic residue modulo q and $g^{2 s} \equiv 2(\bmod q)$ for some s. Now $2 k p+1 \mid M_{p}$ if and only if 2 is a $(2 k)$-ic residue of $2 k p+1$, that is, if and only if $2 k \mid 2 s$. It is natural to assume that $k \mid s$ with probability $1 / k$. There is empirical evidence for this, too. For example, there are 4783 primes $p \equiv 1(\bmod 4)$ with $p<100000$. For 1037 of these p is $6 p+1$ also prime and for 350 of these p does $6 p+1$ divide M_{p}, and 350/1037 $=0.34$.

Combining the apparent answers to our two questions yields this estimate for the expected number $F_{p}(A, B)$ of prime divisors of M_{p} between A and B :

$$
\begin{equation*}
F_{p}(A, B) \approx \sum_{k} 2 C_{2} f(2 k) /(k \log (2 k p)), \tag{1}
\end{equation*}
$$

where the sum extends over all integers k with $k \equiv 0$ or $-p(\bmod 4)$ and $A<2 k p+$ $1 \leqslant B$. Suppose next that A and $B-A$ are large. Let q be an odd prime for which $8 p q^{2}<B-A$. Then q divides about $1 / q$ of the k 's in the sum in (1). For precisely these k 's the product $f(2 k)$ includes the factor $(q-1) /(q-2)$. Thus, the average contribution of q to all $f(2 k)$ in (1) is

$$
\begin{equation*}
\frac{1}{q} \cdot \frac{q-1}{q-2}+\left(1-\frac{1}{q}\right) \cdot 1=\left(1-\frac{1}{(q-1)^{2}}\right)^{-1} . \tag{2}
\end{equation*}
$$

For each odd prime $q<((B-A) /(8 p))^{1 / 2}$, remove the factor $(q-1) /(q-2)$ from each $f(2 k)$ in which it appears, and insert the factor (2) into each term of (1) instead. Since A and $B-A$ are large, the denominators of (1) change very slowly and little net change is made in (1). Now the product of the factors (2) over all primes $q<((B-A) /(8 p))^{1 / 2}$ is essentially $1 / C_{2}$, the error being by a factor of about $\exp \left(-((8 p) /(B-A))^{1 / 2}\right)$, which is very close to 1 provided $B-A$ is large. In summary, if we change $C_{2} f(2 k)$ to 1 in (1), it makes very little difference. After that, we may change the factor of 2 in (1) to 1 if we drop the congruence condition on k. Hence (1) becomes

$$
\begin{equation*}
F_{p}(A, B) \approx \sum_{\substack{k \\ A<2 k p+1 \leqslant B}} \frac{1}{k \log (2 k p)} \approx \log ((\log B) / \log A), \tag{3}
\end{equation*}
$$

which is part of Gillies' conjecture.

If we allow A or $B-A$ to be small, then $F_{p}(A, B)$ is not approximately Poisson distributed with the mean of Gillies' conjecture. For nearby integers j and k, the numbers $2 j p+1$ and $2 k p+1$ may have different probabilities of dividing M_{p} because of the fluctuation possible in $f(2 k)$. Shanks and Kravitz [11] have studied these probabilities in detail. However, we do have $1 \leqslant f(2 k)=O(\log \log k)$ (see page 117 of [7]) so that the fluctuations are not very great.

The possible values of k in (1) are $3,4,7,8,11,12, \ldots$ if $p \equiv 1(\bmod 4)$ and $1,4,5,8,9,12, \ldots$ if $p \equiv 3(\bmod 4)$. Hence, the possible divisors $2 k p+1$ of M_{p} are slightly smaller on the average and therefore more likely to divide M_{p} if $p \equiv 3$ $(\bmod 4)$ than if $p \equiv 1(\bmod 4)$. Thus, M_{p} has a better chance of being prime if $p \equiv 1$ $(\bmod 4)$ than if $p \equiv 3(\bmod 4)$. In fact 16 of the known Mersenne primes have $p \equiv 1$ $(\bmod 4)$ while 10 of them have $p \equiv 3(\bmod 4)$. (See the list in [12].) All Mersenne primes discovered in the last 19 years (those with $5000<p<50000$) have $p \equiv 1$ $(\bmod 4)$. This evidence is suggestive but not statistically significant.

The only property of the Poisson distribution which Gillies used to deduce the three consequences from his conjecture was that if the mean is m, then the probability of the value 0 is e^{-m}. In our case, the probability that M_{p} is prime is about

$$
\begin{equation*}
\prod_{k}\left(1-\frac{2 C_{2} f(2 k)}{k \log (2 k p)}\right) \tag{4}
\end{equation*}
$$

where k runs over $2 p+1 \leqslant 2 k p+1 \leqslant M_{p}^{1 / 2}$ and $k \equiv 0$ or $-p(\bmod 4)$. The logarithm of (4) is about

$$
\sum_{k} \frac{-2 C_{2} f(2 k)}{k \log (2 k p)}
$$

If we use the approximation (3) for $F_{p}(A, B)$, we find that the probability that M_{p} is prime is about

$$
\begin{equation*}
\frac{\log a p}{\log \left(M_{p}^{1 / 2}\right)} \approx \frac{2 \log a p}{p \log 2} \tag{5}
\end{equation*}
$$

where $a=2$ if $p \equiv 3(\bmod 4)$ and $a=6$ if $p \equiv 1(\bmod 4)$, which is Ehrman's [5] sharpened form of Gillies' third consequence. The first two consequences follow easily from either version of the third.

It is well known that the reasoning we used in (4) leads to this contradiction with the prime number theorem: we would say that the probability that a large integer x is prime is about

$$
\prod_{\substack{p \text { prime } \\ p \leqslant x^{1 / 2}}}\left(1-\frac{1}{p}\right) \approx \frac{\mu}{\log \left(x^{1 / 2}\right)}=\frac{2 \mu}{\log x}
$$

where $\mu=e^{-\gamma} \approx 0.5614594836$, and γ is Euler's constant. But the probability should be $1 / \log x$, and $2 \mu>1$. This is Lenstra's [8] complaint. It is almost as well known (see [10] and 22.20 of [13]) that the correct answer is obtained in this simple problem if we replace the exponent $1 / 2$ by μ.

Should we make the same change in Gillies' argument? If we let k in (4) run over $a p+1 \leqslant 2 k p+1 \leqslant M_{p}^{\mu}$, the three consequences become:
(I) The number of Mersenne primes $\leqslant x$ is about $\left(e^{\gamma} / \log 2\right) \log \log x$.
(II) The expected number of Mersenne primes M_{p} with p between x and $2 x$ is e^{γ}.
(III) The probability that M_{p} is prime is about $e^{\gamma} \log a p / p \log 2$.

The first consequences are easiest to compare and are equivalent to the respective third consequences. Let $M(x)$ denote the number of Mersenne primes $\leqslant x$. Consequences (I) and (i) predict that the ratio $M(x) / \log \log x$ is approximately $e^{\gamma} / \log 2$ $=2.5695$ and $2 / \log 2=2.8854$, respectively. This ratio decreases slowly between Mersenne primes and jumps up from $(m-1) / \log \log M_{p}$ to $m / \log \log M_{p}$ at the m th Mersenne prime M_{p}. The following table gives these two values for the five largest known Mersenne primes M_{p}.

		$\frac{m-1}{\log \log M_{p}}$	$\frac{m}{\log \log M_{p}}$
m	p	2.46	2.57
23	11213	2.41	2.52
24	19937	2.50	2.60
25	21701	2.58	2.68
26	23209	2.52	2.61

Although this data is too meager to be statistically significant, it suggests a clear preference for (I) over (i). We believe that (I) is correct because (a) replacing $1 / 2$ by μ works for the prime number theorem and (b) the limited empirical evidence agrees with (I). It would be desirable to have a plausible heuristic explanation for why the fudge factor μ works for the prime number theorem. Lenstra and Pomerance have been led independently to (I).
3. The Empirical Evidence. Using a computer, we found all primes p and q in the intervals $20000<p<10^{5}, q<2^{34}$, for which $q \mid M_{p}$. We used this data to test Gillies' conjecture by calculating statistics similar to those of Ehrman [5] for $10^{5}<p<3 \cdot 10^{5}, q<2^{31}$. Primes p were grouped in 80 intervals defined by

$$
20000+1000 i<p<21000+1000 i
$$

for $i=0(1) 79$. Primes $p \equiv 1$ and $3(\bmod 4)$ were considered separately. A sample consists of the primes in one of the 80 intervals and in a fixed residue class modulo 4.

Consider a sample of size N. Let T be the total number of prime divisors $q<2^{34}$ of M_{p} for p in the sample. We computed the sample mean $\bar{x}=T / N$ and the sample variance

$$
s^{2}=N^{-1} \sum_{n=1}^{6} n^{2} K_{n}-(\bar{x})^{2}
$$

where K_{n} is the number of M_{p} with exactly n prime divisors $<2^{34}$. (Six was the greatest number of divisors we found for any M_{p}.) According to (3), the expected value for the mean m is the average of $\log \left(\left(\log 2^{34}\right) / \log a p\right)$, with a as in (5), taken
over all p in the sample. We computed m and the two statistics

$$
t=(N-1)^{1 / 2}(\bar{x}-m) / s
$$

and

$$
\begin{aligned}
\chi^{2}= & \frac{\left(N e^{-m}-K_{0}\right)^{2}}{N e^{-m}}+\frac{\left(N m e^{-m}-K_{1}\right)^{2}}{N m e^{-m}} \\
& +\frac{\left(N\left(1-e^{-m}-m e^{-m}\right)-K_{2}-K_{3}-K_{4}-K_{5}-K_{6}\right)^{2}}{N\left(1-e^{-m}-m e^{-m}\right)}
\end{aligned}
$$

for each sample. If Gillies' conjecture were true, then for large N, t should have a standard normal distribution and χ^{2} should have a chi-square distribution with 2 degrees of freedom. To test whether this was so we tabulated the number of values of t and χ^{2} in 8 ranges of equal probability, just as Ehrman [5] did. These values are shown in Tables 1 and 2, together with Ehrman's data. We performed a chi-square test with 7 degrees of freedom on the numbers in each column of these tables. The agreement between the expected and observed distributions of t and χ^{2} was not as good for our data as for Ehrman's data. One reason for this is that we have smaller sample sizes N. However, the chi-square statistics for the first two columns of Table 1 are nearly large enough for us to reject at the 5% level the hypothesis that t has a standard normal distribution. Another aspect of the difficulty is seen in the large mean value of t. In deriving (3) we assumed that both A and $B-A$ were large. Now we have used (3) with a small A. To determine the effect of the small A, we repeated all of the preceding statistical analysis with $m=\log \left(\left(\log 2^{34}\right) / \log 2^{24}\right)$ and the divisors q restricted to the interval $\left(2^{24}, 2^{34}\right)$. The results are given in Tables 1 and 2.

Table 1
Observed distribution of t
The expected number of values in each range is 10

Upper limit on t	$0<q<2^{34}$		$2^{24}<\mathrm{q}<2^{34}$		Ehrman
	$p \equiv 1(\bmod 4)$	$\mathrm{p} \equiv 3(\bmod 4)$	$\mathrm{p} \equiv 1(\bmod 4)$	$p \equiv 3(\bmod 4)$	
-1.15	7	4	12	2	5
-. 674	5	4	10	10	11
-. 319	5	9	7	9	7
0.0	7	10	6	12	10
+. 319	13	15	10	13	13
+. 674	15	13	13	10	8
+1.15	13	10	12	11	12
∞	15	15	10	13	14
chi-square	13.6	13.2	4.4	8.8	5.8
mean t	+. 321	+. 335	-. 043	+. 234	$+.247$

Table 2
Observed distribution of χ^{2}
The expected number of values in each range is 10

Upper limit on x^{2}	$0<\mathrm{q}<2^{34}$		$2^{24}<\mathrm{q}<2^{34}$		Ehrman
	$\mathrm{p} \equiv 1(\bmod 4)$	$\mathrm{p} \equiv 3(\bmod 4)$	$\mathrm{p} \equiv 1(\bmod 4)$	$\mathrm{p} \equiv 3(\bmod 4)$	
0.266	6	14	5	10	10
0.576	10	11	8	9	12
0.940	6	8	12	13	9
1.386	9	7	15	10	10
1.962	10	9	13	3	8
2.772	11	12	8	14	8
4.158	17	8	6	9	14
∞	11	11	13	12	9
chi-square	8.5	4.0	9.6	8.0	3.0
mean X^{2}	2.305	2.142	2.318	2.009	1.947

Both the chi-square and the mean t in Table 1 were smaller for the restricted q 's. This confirms our earlier statement that $F_{p}(A, B)$ is not approximately Poisson distributed with the mean of Gillies' conjecture when A is small, while it is when A and $B-A$ are large.

It is well known [7, Theorem 2.5] that

$$
\prod_{\substack{p \text { prime } \\ p \leqslant y}}\left(1-\frac{1}{p}\right)
$$

is the correct probability that a large integer x has no prime divisor $\leqslant y$, provided $\log y=o(\log x)$ as $x \rightarrow \infty$. The analog of this for Mersenne numbers is Gillies' conjecture with $\log B=o(p)$ as $p \rightarrow \infty$. The empirical evidence just discussed supports only this restricted conjecture. It does not suggest, nor do we believe, Gillies' conjecture for B as large as $M_{p}^{1 / 2}$.
4. The Other Tables. In Table 3 we list all pairs p, k which we found for which $20000<p<10^{5}, p$ and $2 p k+1$ are prime, $2 p k+1>2^{31}$, and $2 p k+1$ divides M_{p}. We do not list the divisors $<2^{31}$ because they are too numerous and may be calculated easily. On the other hand, we do list some divisors $>2^{34}$. For $20000<p$ <50000 we searched for divisors of M_{p} up to 2^{35} and when none had been found we went a little further. Table 3 also gives five divisors $2 p k+1>2 \cdot 10^{10}$ for $17000<p$ <20000, which do not appear in [2].

Table 3
Pairs p, k for which $2 k p+1$ divides M_{p}

17851,784760 20021,618583 20369,453787 20641,54911 20983,179513 21179,362772 21557,661587 21943,607928 22349,722256 22531,149253 22817,1397364 23197,112320 23977,131355 24413,193552 25013,142288 25561,386579 25799,84477 25951,269121 26293,45176 26539,242937 26993,922416 27197,99024 27481,160848 27817,171972 28219,1635692 28403,67936 28793,525168 29167,572829 29759,51904 30313,96392 30493,899220 30941,482875 31481,470568 31667,47973 31873,56928 32257,66059 32327,229425 32479,42185 32579,176724 32993,1297648 33349,380636 33589,93375 33863,88581 34159,244236 34471,168441 34897,113472 35419,448845 35951,54409 36293,93015 36607,368729 37097,302340 37633,191456 37957,246332 38449,93936 38833,130911 39181,70596 39251,32241 39679,968609

19081,649599 20021,696628 20441,84988 20663,86532 21089,74607 21313,320331 21817,599787 22063,312656 22433,541803 22531,473481 22907,147604 23327,536973 23993,95551 24469,1633587 25037,559767
25579,135332
25841,64071
26003,219948
26339,158001
26561,219615
2701.1,197005

27239,55320
27653,161667
27967,71225
28283,66673
28477,181784 29059,171516 29201,242851 29837,135900 30319,1411745 30677,1299288 30949,265895 31489,475499 31687,91773
31883,631392
32299,532944 32377,1424235 32491,362069 32713,189612 33023,33556 33353,42012 33589,145547 34123,281117 34211,675621 34591,253793 35107,1013985 35597,291420 35983,11111697 36319,138900 36697,487868 37361,171844 37649,139491 38053,998736 38449,209439 38839,284657 39181,96768 39293,53563 39799,56861

19681,541559 20113,762227 20479,635145 20939,160021 21107,60469 21377,1272195 21929,118371 22093,190835 22447,300468 22531,520208 22937,387264 23557,73544 24097,54960 24697,111687 25057,691223 25643,353116 25873,51267
26053,935756 26431,684689 26591,389605 27077,180403 27367,275412 27737,477040 28001,137643 28297,285179 28607,45240 29101,693920 29269,192567 30011,616468 30391,221289 30839,52785 31121,170059 31567,125648 31687,213612 31963,581441 32303,35341 32441,35928 32531,387709 32779,41829 33029,276367 33353,449547 33703,33848 34127,69745 34337,498744 34673,122532 35111,183309 35863,89400 36007,43428 36389,329095 36899,82417 37369,330839 37663,137076 38119,136964 38543,83125 38861,568804 39191,65373 39367,971.04
39827,109572

19759,730296 20359,140216 20627,104784 20939,756841 21143,856548 21391,272828 21937,163820 22171,343605 22483,113676 22751,110409 23027,185140 23609,410431 24107,110545 24851,650484 25171,56829 25703,86017
25873,316467
26153,208875
26479,104076
26647,126972
27107,155712
27427,305720 27779,189772 28097,286708 28309,122907 28723,105092 29123,1041108 29311,53120 30089,427999 30467,164373
30841,35336
31219,42932
31573,290628 31699,830457 32059,151604 32303,515892 32467,1347072 32563,57513 32831,556428 33071,154509 33413,71032 33857,52804 34127,314064 34351,168564 34739,239880 35267,271129 35879,136704 36241,252975 36469,1279991 36973,64191 37463,162220 37781,150903 38329,91740 38543,259645 38933,177768 39209,203316 39607,218420 39847,175524

19763,570493 20369,140520 20641,54395 20983,65613 21179,64201 21401,348288 21943,94436 22273,105800 22501,67260 22769,171564 23173,794300 23957,182844 24373,431087 24979,1596801 25367,573348 25771,122549 25873,641.111 26209,72647 26501,114340 26839,107436 27127,143432 27427,471500 27803,66748 28123,71472 28309,432500 28729,80787 29137,376464 29363,129016 30109,125939 30469,221831 30881,346236 31219,58749 31627,313184 31769,93687
32159,86356
32323,228116 32479,35177
32569,1021011
32843,53265
33349,362291
33563,58101
33863,37653
34147,135072
34457,47724
34883,107116
35393,36727
35897,880399
36277,89312
36583,30840
36997,175515
37567,528273
37813,140268
38393,72856
38669,223372
38953,123891
39233,1282996
39623,44221
40031,33733

Table 3 (continued)

40063,144813 40577,37492
40699,245732 41039,353185 41243,158101 41809,48696 42101,335920 42499,1202361 43003,67745 43783,85376 43969,80244 44531,78829 44909,33660 45281,469515 45503,123825 45971,33816 46237,54480 46747,402285 46877,145332 47119,706385 47279,30561
47353,444536
47939,31621
48337,126332
48731,41004
49003,176673
49169,189391
49547,35224
49669,51276
50033,31840
50503,33036
50857,112763
51481,48543
51829,53951
52237,29855
52667,79693
52973,39100
53239,43320 53437,21408 53899,23592 54413,78352 54787,53333 55343,32752 55733,21775 56633,74631 57221,115531 57601,26468 58027,42432 58439,21049 59219,56652 59659,26405 60317,23355 61099,31397 61409,52711 61949,61132 62351,35965 63059,42552 63521,48760

40099,75177
40597,290655
40787,213592 41057,323283 41381,1003644 41903,44353 42139,131529 42643,53472 43261,109724 43801,44615 44021,24799 44543,42741 44971,337893 45289,112247 45541,187575 45979,40716 46601,129375 46771,169641 46877,201724 47149,111939 47303,378996 47441,66528 48109,177240 48397,41004 48847,50204 49009,68555 49201,76304 49549,47907 49739,71164 50101,64584 50581,23520 50873,116623 51511,30644 51859,50801 52237,41388 52697,42523 53047,125672 53299,31917 53479,51129 53951,44848 54539,113781 54973,30972 55381,54896 55967,39585 56659,19061 57241,25575 57679,77201 58031,48364 58441,20999 59233,43976 59699,41176 60539,111645 61169,75904 61483,35993 62119,17457 62459,20712 63067,58917 63743,11184.

40237,380259 40637,176584 40813,1002836 41141,174163 41389,913584 41953,428816 42197,85107 42697,717623 43397,139435 43889,167715 44101,26768 44711,138160 45119,57144 45337,47643 45751,598724 46021,42723
46649,24795
46811,54793
46889,55467 47207,796237 47309,55572 47521,74351 48179,37269 48407,1112308 48847,187712 49081,268671 49391,102648 49597,278804 49853,207868 50131,108329 50647,153009 51169,68336 51647,20932 52027,39420 52253,58455 52697,58183 53089,127995 53309,133812
53551,22385 53987,22665 54581,67539 54979,49256 55411,24221 56039,123876 56957,78124 57269,63267 57793,29043 58147,132140 58693,75548 59419,82512 59863,46452 60607,58889 61211,29304 61511,46249 62131,97893 62617,21984 63299,91489 63839,66804

40433,122343 40693,214052 40849,50319
41183,184053 41621,46363
42013,64667
42359,74020
42853,599495 43451,533353 43891,78416
44189,150079
44819,434076
45131,129985
45341,52224
45833,251191 46147,125928
46703,36036
46831,37196
47051,165085 47221,234536 47317,45684 47743,31521
48179,43329
48463,179105
48953,97896
49121,236655 49411,558368 49627,27449 49943,9558.12 50177,37524 50789,89464 51197,37980 51817,83319 52.163,157660 52289,102136 52807,56940 53117,70063 53381,146016 53551,75224 54163,42252 54623,33757 55147,31589 55547,66633 56377,92063 56963,31981 57331,84401 57859,26156 58363,28880 59023,23148 59611,96348 59999,36921 60703,92220 61291,18984 61547,47437 62143,87368 62761,133568 63331,103064 64171,21273

40493,1141348
40697,214248
41011,46709
41227,124689
41651,222013
42061,529928
42491,196021
42979,268704
43753,60476
43963,1022433
44279,74484
44893,33996
45139,506156
45439,933300
45853,29367
46199,133845
46727,76840
46877,81808
47111,181153 47237,161140 47351,67704 47837,400083 48187,648252
48491,85201
48989,53820
49157,30267
49429,331071
49633,279972
50023,28193
50441,32451
50833,137583
51473,130972
51827,155652 52223,63705 52543,98652 52813,159551 53173,25436 53401,102960 53657,69223 54287,62428 54767,28065 55229,86887 55579,99252 56519,49504 56989,31836 57367,80405 57977,48523 58393,57375 59063,134293 59617,61208 60101,131871 60917,39604 61357,55772 61657,82403 62299,75237 63031,105933 63391,30156
64187,36192

Table 3 (continued)

64231,33473
64927,66105
65419,32477
65951,126808
66553,93095
67169,44475
68443,77525
69233,22315
69857,19119
70423,51512
70957,100523
71389,103976
71881,18635
73009,67655
73867,65753
74959,42969
75277,57087
75979,49356
76631,60588
77267,49173
78317,37164 78919,24092 79549,45495 80309,65824 80929,37047 81131,31149 81547,59469 82207,26048 82567,54009 83269,13095 83537,43935 84319,21149 85193,95115 85817,35172 86291,84309 86677,18315 87491,36540 88499,23296 89209,38876 89983,34013 90847,27092 91331,14101 91781,89259 92233,75492 92581,16836 93001,27863 93427,15597 93971,78748 94261,63356 94603,45441 95107,56300 95479,54281 95929,52284 96259,22001 96851,29569 97549,33719 98009,86799 98533,29075 99371,16284

64301,84288
65101,57008 65713,53195 66041,60804 66601,70131 67189,53396 68699,18697 69497,18879 69859,16557 70429,83580 70999,16065 71471,15609 71993,47200 73063,66837 73973,14568 75079,19880 75391,83385 76123,24428 76753,30288 77369,77119 78439,95189 79193,71652 79693,27780 80387,61264 81017,7.1148 81131,80509 81619,38412 82421,27444 82727,59833 83269,49764 83719,16961 84437,25024 85199,24117 85889,44871 86323,14216 86711,71193 87517,73292 88513,27908 89237,16984 90401,51991 91019,15316 91393,60716 91807,29169 92237,74392 92699,16357 93059,17245 93563,18153 94057,19415 94421,80319 94651,36564 95131,61149 95701,43991 95987,20433 96259,51201 97021,18080 97613,27783 98017,16719 98627,69424 99623,16428

64783,55196 65101,131280 65809,21155 66271,63365
66713,68080 67481,100939 68881,58184 69677,22932 69877,71592 70501,101840 71287,27117 71837,92272 71999,36157 73379,44629 74177,58308 75083,73737 75533,35935 76379,84816 77003,26556 77419,18360 78539,65464 79229,57400 79867,41849 80447,72793 81031,14724 81233,20076 81727,22709 82483,30972 82913,55495 83299,46265 83773,87707 84731,12865 85297,74232 85999,46740 86357,42108 86861,27024 87523,55757 88799,49869 89371,30093 90703,42848 91099,17061 91573,27611 91951,16008 92269,24567 92821,15000 93133,12627 93761,24520 94153,75696 94541,11724 94849,22919 95177,23835 95737,84623 96017,36748 96329,78336 97157,11520 97771,14625 98297,23524 93893,14715

64817,92968 65239,117101 65843,33025 66347,90360 66721,98355 67867,36725 69073,16716 69829,35087 70201,28508 70717,15687 71287,59732 71843,15381 72481,31139 73589,103932 74177,65019 75167,33049 75797,20763 76481,90100 77137,23520 78203,17968 78713,46003 79319,27720 80141,40515 80603,41553 81049,26772 81281,36543 82009,15807 82487,40929 83063,38848 83311,70269 84067,18552 84751,39965 85597,27648 86077,76559 86423,23512 87133,75708 87587,21780 88969,87051 89809,16536 90833,72000 91121,59460 91573,38087 92077,13583 92353,20736 92861,13680 93257,12684 93851,48804 94229,22635 94543,16773 94999,44712 95203,17888 95881,18423 96043,61392 96451,16184 97177,64883 97859,25752 98347,32792 98963,13060

64901,77388 65327,122589 65921,18579 66463,44672 66949,68276 68071,52229 69149,31527 69833,83680 70229,45412 70729,29027 71339,77556 71867,35257 72661,103620 73757,80904 74779,22509 75217,93548 75821,38620 76493,48687 77171,30069 78283,23552 78853,56432 79399,39672 80231,14628 80677,18860 81119,31024 81401,17340 82153,30575 82567,16205 83267,16353 83407,22092 84307,16368 85081,97215 85711,29720 86131,29393 86453,72600 87281,38256 87751,45345 89083,18060 89819,17784 90847,12900 91291,66540 91703,68541 92119,42597 92413,20747 92893,21756 93419,81421 93901,58463 94253,54435 94561,54096 95027,15417 95393,42072 95891,34993 96149,22152 96769,20396 97187,23649 97883,26817 98467,85344 99367,33420

Table 4
Primes p for which no divisor of M_{p} is known
$50069,087,111,119,123,153,221,227,231,261,263,273,287,329,341,359$ $50383,417,461,513,543,551,599,683,723,741,753,767,821,839,929,951$ $50957,969,989,993,001,031,043,047,059,061,071,151,193,217,229,257$ $51263,307,341,347,349,407,421,427,431,437,439,449,479,487,517,551$ $51563,577,581,599,607,613,637,679,691,749,767,853,869,871,899,907$ $51913,929,941,949,971,973,991,009,021,051,081,177,183,267,301 ; 313$ $52321,363,369,391,457,489,501,517,529,541,561,579,609,639,673,711$ $52721,747,757,769,859,889,901,903,963,967,999,003,017,077,101,113$ $53129,147,189,197,201,231,267,279,323,327,407,453,503,507,527,549$ $53569,593,611,623,629,653,681,777,813,819,857,881,887,917,939,959$ $53993,001,013,049,059,139,151,167,269,277,293,311,319,323,331,347$ $54361,371,377,401,403,409,419,421,437,449,493,497,499,517,547,563$ $54583,617,629,647,673,709,713,727,751,773,833,851,869,881,907,919$ $54941,949,983,021,057,061,079,117,127,163,201,213,243,259,313,331$ $55337,351,399,469,487,501,511,529,589,609,667,681,697,763,787,807$ $55817,819,823,829,837,849,889,903,009,041,053,101,113,131,149,197$ $56207,237,239,267,269,299,311,333,359,401,417,431,443,453,473,477$ $56489,509,527,533,543,591,597,611,629,681,687,711,731,737,747,767$ $56779,807,813,827,843,873,893,897,909,911,921,941,041,059,073,089$ $57139,143,149,163,179,191,193,223,259,283,287,301,349,383,389,397$ $57413,457,487,503,557,559,587,593,637,641,697,709,713,719,737,773$ $57803,829,847,853,881,901,917,923,943,973,991,043,057,099,109,111$ $58193,199,207,217,367,369,379,391,403,453,477,481,537,543,549,613$ $58631,687,699,711,727,733,741,757,763,771,789,889,897,907,913,937$ $58943,011,051,053,083,107,113,149,159,167,183,197,207,209,239,243$ $59263,333,357,377,387,393,443,467,471,473,497,557,567,581,627,629$ $59651,671,693,729,747,753,771,779,797,887,929,957,971,013,029,089$ $60091,103,107,149,161,167,169,209,257,259,271,289,293,337,353,413$ $60427,443,449,493,497,521,601,611,617,623,637,649,661,679,727,733$ $60737,757,763,811,821,869,889,899,901,953,007,027,031,043,051,057$ $61091,121,151,223,253,297,339,363,379,417,463,469,471,487,493,519$ $61543,553,583,603,631,643,667,673,681,687,729,781,813,819,837,843$ $61861,879,909,927,933,967,979,987,003,017,047,053,129,141,207,233$ $62273,303,311,327,347,383,483,501,533,539,549,597,633,653,659,683$ $62687,723,731,773,801,827,869,903,927,929,939,983,987,029,113,127$ $63149,197,199,211,241,277,313,337,353,377,397,443,467,487,527,533$ $63541,559,589,599,601,617,647,649,659,667,689,691,697,709,781,809$ $63823,841,853,857,901,907,929,949,977,007,013,019,063,067,091,109$ $64217,223,237,279,319,327,373,381,399,403,433,453,483,489,499,553$ $64579,591,601,609,613,621,633,661,679,717,747,781,811,849,877,879$ $64937,969,003,011,027,029,053,071,089,119,123,129,141,179,203,213$ $65257,267,269,287,293,309,323,371,393,413,423,447,479,519,521,537$ $65539,543,557,563,629,633,647,687,699,701,717,719,729,731,761,777$ $65831,839,929,957,993,029,037,047,083,089,103,107,109,137,161,169$ $66173,179,221,239,343,359,361,377,413,449,457,467,491,499,509,523$ $66541,617,643,653,683,733,751,797,841,853,863,883,889,919,923,931$ $66943,947,973,033,121,129,141,181,211,213,217,21.9,231,247,273,289$ $67307,343,369,421,427,433,453,477,537,547,601,607,619,631,651,679$ $67733,751,757,763,777,783,789,807,843,853,901,927,931,933,939,957$ $67961,967,979,987,993,023,059,087,099,141,161,207,209,213,219,227$

Table 4 (continued)

68239,261,281,311,329,371,473,477,483,491,501,507,521,531,581,597 $68659,669,683,687,711,713,743,749,777,791,813,821,863,879,891,899$ 68903,927,947,993,011,019,029,031,061,067,143,151,191,193,197,239
 69763,767,821,847,899,929,931,003,009,019,051,061,099,111,117,123 70139,141,157,177,181,183,207,237,249,297,321,381,457,459,487,529 70537,583,607,619,663,667,687,753,769,783,823,841,843,849,867,877 70879,913,949,951,969,991,011,039,069,081,119,129,143,147,167,191 $71209,233,249,257,261,263,293,327,329,333,353,411,419,437,443,453$ $71473,479,483,549,551,563,569,593,633,663,693,699,707,711,719,741$ 71789,807,821,849,861,887,899,909,917,933,941,963,983,987,043,047 72077,091,109,161,169,221,229,269,271,277,307,337,353,379,421,431 $72461,467,469,493,559,643,649,673,679,689,701,707,727,733,739,797$ 72817,859,883,889,893,923,931,949,953,997,019,037,043,079,091,121 $73133,181,237,243,277,303,309,327,331,361,369,417,421,433,471,483$ $73517,561,583,607,609,637,643,673,679,699,709,783,819,847,859,883$ 73897,907,939,999,017,021,047,071,131,149,159,167,189,201,209,231 74257,279,287,297,317,323,377,381,383,441,449,453,471,489,531,551 $74573,597,611,623,653,687,717,747,857,861,869,891,903,923,933,941$ 75011,029,193,209,223,227,239,289,307,323,329,377,401,403,407,431 75527,539,553,557,571,577,619,629,653,659,689,703,709,731,773,787 75793,869,883,931,937,989,991,997,003,039,099,129,147,159,231,243 $76253,261,343,367,387,403,421,441,471,507,537,541,543,603,607,649$ $76697,733,777,801,829,837,847,873,949,963,991,029,041,047,101,141$ 77191,239,249,263,269,279,291,317,339,383,417,477,489,509,527,557 $77563,569,573,621,647,687,689,713,719,723,731,743,747,761,801,849$ 77863,893,899,969,999,041,049,079,179,193,229,233,241,259,301,347 $78401,437,467,479,487,497,517,541,553,569,571,577,583,593,607,643$ $78649,691,697,721,737,787,797,823,857,877,901,929,977,989,031,039$ 79043,063,103,133,139,147,153,181,241,273,279,309,333,349,357,393 $79427,433,451,531,537,579,589,609,621,627,631,657,669,687,699,757$ $79777,801,813,817,823,843,847,861,901,907,943,979,051,107,149,153$ 80167,177,207,233,239,263,287,341,363,407,429,449,513,567,599,611 $80627,629,657,669,671,713,737,777,779,783,803,809,849,863,909,911$ 80917,923,933,989,047,163,173,181,197,203,239,283,293,299,307,331 81371, 373,409,421,439,457,509,533,553,637,647,649,667,671,677,689 81701,737,749,769,869,901,919,929,937,943,967,971,973,003,007,013 82021,031,037,039,051,073,141,163,171,189,219,241,261,267,339,373 82387,463,493,507,529,531,549,559,571,601,619,633,657,699,721,723 82759,781,793,813,837,883,889,891,939,023,059,089,093,101,117,177 $83203,207,219,227,231,233,273,383,389,443,449,561,563,591,597,609$ 83621,663,717,737,761,777,791,813,833,869,873,891,911,921,987,053 $84127,137,143,163,179,181,191,199,347,377,389,391,407,457,467,509$ 84521,559,589,631,649,697,701,713,719,737,761,811,857,859,869,871 $84913,967,009,027,037,049,091,093,121,147,159,201,259,303,313,331$ $85333,363,369,381,447,451,469,549,577,619,627,661,667,703,717,733$ 85781,819,831,843,847,909,933,011,083,113,117,161,197,209,239,243 86249,269,311,351,371,389,399,441,467,491,509,531,561,573,579,587 86599,627,629,689,693,719,743,813,851,923,927,951,959,993,011,013 87037,041,049,103,121,149,151,179,187,211,221,251,253,257,317,359

Table 4 (continued)

87403,407,443,481,547,553,557,559,589,623,631,641,649,671,679,691 87697,719,739,743,767,811,877,887,931,943,973,977,001,007,019,069 88117,169,177,223,237,241,261,321,339,379,397,423,427,469,493,609 88651,661,663,667,681,721,741,747,771,789,793,817,819,843,867,873 88883,897,937,951,017,041,057,069,101,107,137,203,213,227,231,261 89269,273,293,303,317,387,393,413,431,443,449,477,491,501,519,527 89533,561,563,567,591,599,603,611,627,633,653,659,669,671,681,689 89767,783,797,821,833,839,891,899,909,939,959,963,977,001,017,019 90023,031,053,059,067,071,073,089,107,121,149,163,173,187,199,203 90217,227,247,263,281,289,313,371,379,397,403,407,437,439,473,511 90533,547,583,631,641,647,679,709,731,749,787,823,841,863,887,911 90917,931,997,009,081,097,127,153,193,237,243,249,253,297,309,367 91369,373,387,411,423,459,493,513,529,621,711,801,811,813,823,841 91909,921,939,943,957,967,009,033,041,051,083,143,153,173,177,179 $92221,227,311,317,377,381,387,399,401,419,431,503,507,557,567,569$ $92593,623,627,639,641,647,657,671,681,707,717,737,761,779,791,809$ $92849,857,863,867,899,921,927,941,959,993,077,083,097,103,131,139$ 93179,187,229,251,263,281,283,287,307,329,337,377,383,407,463,491 $93493,553,557,581,601,607,629,637,701,703,739,809,811,871,887,889$ 93913,923,937,941,949,967,997,009,049,109,111,121,201,207,273,307 $94309,321,327,331,349,351,379,397,433,439,441,447,529,583,613,621$ $94649,723,727,777,793,811,819,823,837,873,889,933,003,021,071,087$ 95089,101,143,153,189,191,233,239,261,311,317,327,369,383,401,413 $95441,443,461,467,471,483,507,527,531,549,597,617,621,633,717,731$ 95747,783,803,813,869,911,923,947,971,989,013,059,079,097,137,157 96167,181,199,221,223,263,269,293,323,331,337,353,377,401,419,431 $96457,461,469,479,487,493,497,517,587,671,703,739,749,757,763,797$ $96799,823,847,893,907,911,931,959,973,997,001,003,073,103,127,169$ $97231,301,327,367,369,373,379,381,387,423,429,453,459,463,499,547$ $97579,607,609,651,673,687,711,777,787,789,813,841,847,849,861,919$ 97927,961,973,011,041,047,081,143,179,207,221,251,269,299,321,323 98327,369,389,411,443,479,543,561,563,597,663,717,729,737,849,869 $98873,887,899,909,911,927,929,947,953,993,041,053,089,103,109,119$ 99131,133,137,149,173,223,233,257,277,317,349,409,431,497,523,529 99577,581,611,679,689,707,719,721,761,767,793,809,823,829,833,877 99881,901,923,929,971,989

Several years ago when we made available a list of divisors of M_{p} for $17000<p<$ 50000, Noll and Nickel [9] and Slowinski [12] were inspired to search for Mersenne primes within this range and found three new ones. To provide further inspiration we present in Table 4 the 2166 primes $50000<p<10^{5}$ for which M_{p} has no divisor $<2^{34}$. The first prime in each row is written in full; only the low-order three digits of the other primes are shown. According to the second consequence (II) we should expect that M_{p} is prime for about 1.78 of the primes in Table 4.

The author is grateful to the University of Illinois for providing the computer time used in this project. He thanks Professor Robert Bohrer for suggesting the secondary chi-square test.

[^1]1. Paul T. Bateman \& Roger A. Horn, "A heuristic asymptotic formula concerning the distribution of prime numbers," Math. Comp., v. 16, 1962, pp. 363-367. MR 26 \#6139.
2. John Brillhart, "On the factors of certain Mersenne numbers, II," Math. Comp., v. 18, 1964, pp. 87-92. MR 28 \# 2992.
3. Cherwell, "Note on the distribution of the intervals between prime numbers," Quart. J. Math. Oxford, v. 17, 1946, pp. 46-62. MR 8, 136.
4. Cherwell \& E. M. Wright, "The frequency of prime patterns," Quart. J. Math. Oxford (2), v. 11, 1960, pp. 60-63. MR 24 \#A98.
5. John R. Ehrman, "The number of prime divisors of certain Mersenne numbers," Math. Comp., v. 21, 1967, pp. 700-704. MR 36 \# 6368.
6. Donald B. Gillies, "Three new Mersenne primes and a statistical theory," Math. Comp., v. 18, 1964, pp. 93-97. MR 28 \# 2990.
7. H. Halberstam \& H. E. Richert, Sieve Methods, Academic Press, New York, 1974. MR 54 \# 12689.
8. H. W. Lenstra, Jr., "Primality testing," Studieweek Getaltheorie en Computers, Sept. 1-5, 1980, Stichting Math. Centrum, Amsterdam.
9. Curt Noll \& Laura Nickel, "The 25 th and 26 th Mersenne primes," Math. Comp., v. 35, 1980, pp. 1387-1390.
10. G. Pólya, "Heuristic reasoning in the theory of numbers," Amer. Math. Monthly, v. 66, 1959, pp. 375-384. MR 21 \# 3392.
11. Daniel Shanks \& Sidney Kravitz, "On the distribution of Mersenne divisors," Math. Comp., v. 21, 1967, pp. 97-101. MR 36 \# 3717.
12. David Slowinski, "Searching for the 27 th Mersenne prime," J. Recreational Math., v. 11, 1979, pp. 258-261. MR 80g: 10013.
13. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers, Fourth ed., Clarendon Press, London, 1960.

[^0]: Received July 20, 1981; revised December 22, 1981.
 1980 Mathematics Subject Classification. Primary 10A25, 10A40; Secondary 10-04.
 Key words and phrases. Mersenne number.
 *Current address. Department of Statistics and Computer Science, University of Georgia, Athens, Georgia 30602.

[^1]: Department of Mathematics
 University of Illinois
 Urbana, Illinois 61801

