Divisors of Mersenne Numbers

By Samuel S. Wagstaff, Jr.*

Abstract. We add to the heuristic and empirical evidence for a conjecture of Gillies about the distribution of the prime divisors of Mersenne numbers. We list some large prime divisors of Mersenne numbers M_p in the range 17000 .

1. Introduction. In 1964, Gillies [6] made the following conjecture about the distribution of prime divisors of Mersenne numbers $M_p = 2^p - 1$:

Conjecture. If $A < B \le \sqrt{M_p}$, as B/A and $M_p \to \infty$, the number of prime divisors of M_p in the interval [A, B] is Poisson distributed with mean $\approx \log((\log B)/\log(\max(A, 2p)))$.

He noted that his conjecture would imply that

- (i) The number of Mersenne primes $\leq x$ is about $(2/\log 2)\log \log x$.
- (ii) The expected number of Mersenne primes M_p with p between x and 2x is 2.
- (iii) The probability that M_p is prime is about $2 \log 2p/p \log 2$.

He supported his conjecture with a heuristic argument and empirical data. Ehrman [5] sharpened Gillies' conjecture slightly and supplied more empirical evidence. The present paper strengthens the heuristic argument and adds to the empirical data in support of the conjecture.

Consequence (iii) follows from the conjecture by taking A = 2p and $B = M_p^{1/2}$. The first two consequences follow easily from the third. Lenstra [8] has objected that one is not entitled to take B as large as $M_p^{1/2}$ in the conjecture because similar reasoning leads to a contradiction with the prime number theorem. We discuss Lenstra's objection.

The paper concludes with a table of large prime divisors of some Mersenne numbers and a table of some primes between 50000 and 100000 for which no prime divisors of M_p are known.

2. The Heuristic Argument. It is well known that all divisors of M_p have the form q = 2kp + 1, where $k \equiv 0$ or $-p \pmod{4}$. How often is such a q prime? When q is prime, what are its chances of dividing M_p ? The first question is answered heuristically by the Bateman-Horn conjecture [1] which is consistent with the prime number

Received July 20, 1981; revised December 22, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A25, 10A40; Secondary 10—04.

Key words and phrases. Mersenne number.

^{*}Current address. Department of Statistics and Computer Science, University of Georgia, Athens, Georgia 30602.

theorem and which is believed by many mathematicians. According to that conjecture, for each k the number of $p \le x$ for which both p and 2kp + 1 are prime is asymptotically

$$2 \prod_{\substack{q \text{ odd} \\ \text{prime}}} \left(1 - \frac{1}{(q-1)^2}\right) \cdot \prod_{\substack{q \mid 2k \\ q \text{ odd prime}}} \frac{q-1}{q-2} \cdot \frac{x}{(\log x) \log(2kx)}.$$

(See also (7) of [11] and compare with [3], [4] and [10].) Write C_2 for the first product and f(2k) for the second one. Thus, if we are given that p is prime, then for fixed k the probability that 2kp + 1 is also prime is about $2C_2 f(2k)/\log(2kp)$.

Now suppose p is prime, k is a positive integer, q = 2kp + 1 is prime, and $k \equiv 0$ or $-p \pmod{4}$. Shanks and Kravitz [11] present this good heuristic argument that $q \mid M_p$ with probability 1/k: Let g be a primitive root of q. The congruence satisfied by k insures that $2kp + 1 \equiv \pm 1 \pmod{8}$. Hence, 2 is a quadratic residue modulo q and $g^{2s} \equiv 2 \pmod{q}$ for some s. Now $2kp + 1 \mid M_p$ if and only if 2 is a (2k)-ic residue of 2kp + 1, that is, if and only if $2k \mid 2s$. It is natural to assume that $k \mid s$ with probability 1/k. There is empirical evidence for this, too. For example, there are 4783 primes $p \equiv 1 \pmod{4}$ with p < 100000. For 1037 of these p is 6p + 1 also prime and for 350 of these p does 6p + 1 divide M_p , and 350/1037 = 0.34.

Combining the apparent answers to our two questions yields this estimate for the expected number $F_p(A, B)$ of prime divisors of M_p between A and B:

(1)
$$F_p(A, B) \approx \sum_{k} 2C_2 f(2k) / (k \log(2kp)),$$

where the sum extends over all integers k with $k \equiv 0$ or $-p \pmod 4$ and $A < 2kp + 1 \le B$. Suppose next that A and B - A are large. Let q be an odd prime for which $8pq^2 < B - A$. Then q divides about 1/q of the k's in the sum in (1). For precisely these k's the product f(2k) includes the factor (q-1)/(q-2). Thus, the average contribution of q to all f(2k) in (1) is

(2)
$$\frac{1}{q} \cdot \frac{q-1}{q-2} + \left(1 - \frac{1}{q}\right) \cdot 1 = \left(1 - \frac{1}{(q-1)^2}\right)^{-1}.$$

For each odd prime $q < ((B-A)/(8p))^{1/2}$, remove the factor (q-1)/(q-2) from each f(2k) in which it appears, and insert the factor (2) into each term of (1) instead. Since A and B-A are large, the denominators of (1) change very slowly and little net change is made in (1). Now the product of the factors (2) over all primes $q < ((B-A)/(8p))^{1/2}$ is essentially $1/C_2$, the error being by a factor of about $\exp(-((8p)/(B-A))^{1/2})$, which is very close to 1 provided B-A is large. In summary, if we change $C_2 f(2k)$ to 1 in (1), it makes very little difference. After that, we may change the factor of 2 in (1) to 1 if we drop the congruence condition on k. Hence (1) becomes

(3)
$$F_p(A, B) \approx \sum_{\substack{k \\ A \le 2kp+1 \le B}} \frac{1}{k \log(2kp)} \approx \log((\log B)/\log A),$$

which is part of Gillies' conjecture.

If we allow A or B-A to be small, then $F_p(A, B)$ is not approximately Poisson distributed with the mean of Gillies' conjecture. For nearby integers j and k, the numbers 2jp+1 and 2kp+1 may have different probabilities of dividing M_p because of the fluctuation possible in f(2k). Shanks and Kravitz [11] have studied these probabilities in detail. However, we do have $1 \le f(2k) = O(\log \log k)$ (see page 117 of [7]) so that the fluctuations are not very great.

The possible values of k in (1) are 3,4,7,8,11,12,... if $p \equiv 1 \pmod 4$ and 1,4,5,8,9,12,... if $p \equiv 3 \pmod 4$. Hence, the possible divisors 2kp+1 of M_p are slightly smaller on the average and therefore more likely to divide M_p if $p \equiv 3 \pmod 4$ than if $p \equiv 1 \pmod 4$. Thus, M_p has a better chance of being prime if $p \equiv 1 \pmod 4$ than if $p \equiv 3 \pmod 4$. In fact 16 of the known Mersenne primes have $p \equiv 1 \pmod 4$ while 10 of them have $p \equiv 3 \pmod 4$. (See the list in [12].) All Mersenne primes discovered in the last 19 years (those with $5000) have <math>p \equiv 1 \pmod 4$. This evidence is suggestive but not statistically significant.

The only property of the Poisson distribution which Gillies used to deduce the three consequences from his conjecture was that if the mean is m, then the probability of the value 0 is e^{-m} . In our case, the probability that M_p is prime is about

$$(4) \qquad \qquad \prod_{k} \left(1 - \frac{2C_2 f(2k)}{k \log(2kp)} \right),$$

where k runs over $2p + 1 \le 2kp + 1 \le M_p^{1/2}$ and $k \equiv 0$ or $-p \pmod{4}$. The logarithm of (4) is about

$$\sum_{k} \frac{-2C_2 f(2k)}{k \log(2kp)}.$$

If we use the approximation (3) for $F_p(A, B)$, we find that the probability that M_p is prime is about

(5)
$$\frac{\log ap}{\log(M_p^{1/2})} \approx \frac{2\log ap}{p\log 2},$$

where a = 2 if $p \equiv 3 \pmod{4}$ and a = 6 if $p \equiv 1 \pmod{4}$, which is Ehrman's [5] sharpened form of Gillies' third consequence. The first two consequences follow easily from either version of the third.

It is well known that the reasoning we used in (4) leads to this contradiction with the prime number theorem: we would say that the probability that a large integer x is prime is about

$$\prod_{\substack{p \text{ prime} \\ p \leqslant x^{1/2}}} \left(1 - \frac{1}{p}\right) \approx \frac{\mu}{\log(x^{1/2})} = \frac{2\mu}{\log x},$$

where $\mu = e^{-\gamma} \approx 0.5614594836$, and γ is Euler's constant. But the probability should be $1/\log x$, and $2\mu > 1$. This is Lenstra's [8] complaint. It is almost as well known (see [10] and 22.20 of [13]) that the correct answer is obtained in this simple problem if we replace the exponent 1/2 by μ .

Should we make the same change in Gillies' argument? If we let k in (4) run over $ap + 1 \le 2kp + 1 \le M_p^{\mu}$, the three consequences become:

- (I) The number of Mersenne primes $\leq x$ is about $(e^{\gamma}/\log 2)\log \log x$.
- (II) The expected number of Mersenne primes M_p with p between x and 2x is e^{γ} .
- (III) The probability that M_p is prime is about $e^{\gamma} \log ap/p \log 2$.

The first consequences are easiest to compare and are equivalent to the respective third consequences. Let M(x) denote the number of Mersenne primes $\leq x$. Consequences (I) and (i) predict that the ratio $M(x)/\log\log x$ is approximately $e^{\gamma}/\log 2 = 2.5695$ and $2/\log 2 = 2.8854$, respectively. This ratio decreases slowly between Mersenne primes and jumps up from $(m-1)/\log\log M_p$ to $m/\log\log M_p$ at the mth Mersenne prime M_p . The following table gives these two values for the five largest known Mersenne primes M_p .

		m - 1	m
m	p	$\overline{\log \log M_p}$	$\log \log M_p$
23	11213	2.46	2.57
24	19937	2.41	2.52
25	21701	2.50	2.60
26	23209	2.58	2.68
27	44497	2.52	2.61

Although this data is too meager to be statistically significant, it suggests a clear preference for (I) over (i). We believe that (I) is correct because (a) replacing 1/2 by μ works for the prime number theorem and (b) the limited empirical evidence agrees with (I). It would be desirable to have a plausible heuristic explanation for why the fudge factor μ works for the prime number theorem. Lenstra and Pomerance have been led independently to (I).

3. The Empirical Evidence. Using a computer, we found all primes p and q in the intervals $20000 , <math>q < 2^{34}$, for which $q \mid M_p$. We used this data to test Gillies' conjecture by calculating statistics similar to those of Ehrman [5] for $10^5 , <math>q < 2^{31}$. Primes p were grouped in 80 intervals defined by

$$20000 + 1000i$$

for i = 0(1)79. Primes $p \equiv 1$ and 3 (mod 4) were considered separately. A *sample* consists of the primes in one of the 80 intervals and in a fixed residue class modulo 4.

Consider a sample of size N. Let T be the total number of prime divisors $q < 2^{34}$ of M_p for p in the sample. We computed the sample mean $\bar{x} = T/N$ and the sample variance

$$s^{2} = N^{-1} \sum_{n=1}^{6} n^{2} K_{n} - (\bar{x})^{2},$$

where K_n is the number of M_p with exactly n prime divisors $< 2^{34}$. (Six was the greatest number of divisors we found for any M_p .) According to (3), the expected value for the mean m is the average of $\log((\log 2^{34})/\log ap)$, with a as in (5), taken

over all p in the sample. We computed m and the two statistics

$$t = (N-1)^{1/2}(\bar{x}-m)/s$$

and

$$\chi^{2} = \frac{\left(Ne^{-m} - K_{0}\right)^{2}}{Ne^{-m}} + \frac{\left(Nme^{-m} - K_{1}\right)^{2}}{Nme^{-m}} + \frac{\left(N(1 - e^{-m} - me^{-m}) - K_{2} - K_{3} - K_{4} - K_{5} - K_{6}\right)^{2}}{N(1 - e^{-m} - me^{-m})}$$

for each sample. If Gillies' conjecture were true, then for large N, t should have a standard normal distribution and χ^2 should have a chi-square distribution with 2 degrees of freedom. To test whether this was so we tabulated the number of values of t and χ^2 in 8 ranges of equal probability, just as Ehrman [5] did. These values are shown in Tables 1 and 2, together with Ehrman's data. We performed a chi-square test with 7 degrees of freedom on the numbers in each column of these tables. The agreement between the expected and observed distributions of t and χ^2 was not as good for our data as for Ehrman's data. One reason for this is that we have smaller sample sizes N. However, the chi-square statistics for the first two columns of Table 1 are nearly large enough for us to reject at the 5% level the hypothesis that t has a standard normal distribution. Another aspect of the difficulty is seen in the large mean value of t. In deriving (3) we assumed that both t and t and t were large. Now we have used (3) with a small t and t and the divisors t restricted to the interval t and t are given in Tables 1 and 2.

TABLE 1

Observed distribution of t

The expected number of values in each range is 10

Upper limit	0 < q < 2 ³⁴		$2^{24} < q < 2^{34}$		
on t	p = 1 (mod 4)	p = 3 (mod 4)	p = 1 (mod 4)	p = 3 (mod 4)	Ehrman
-1.15	7	4	12	2	5
674	5	4	10	10	11
319	5	9	7	9	7
0.0	7	10	6	12	10
+.319	13	15	10	13	13
+.674	15	13	13	10	8
+1.15	13	10	12	11	12
∞	15	15	10	13	14
chi-square	13.6	13.2	4.4	8.8	5.8
mean t	+.321	+.335	043	+.234	+.247

Upper limit on χ^2

0.266 0.576 0.940 1.386 1.962

2.772

4.158

chi-square mean χ^2

p =

10

11

17

11

8.5

2.305

The expected number of values in each range is 10						
	1 < 2 ³⁴	2 ²⁴ < 0	0 < q < 2 ³⁴			
Ehrman	p ≡ 3 (mod 4)	p = 1 (mod 4)	p ≡ 3 (mod 4)	1 (mod 4)		
10	10	5	14	6		
12	9	8	11	10		
9	13	12	8	6		
10	10	15	7	9		

13

8

6

13

9.6

2.318

3

14

12

8.0

2.009

8

8

14

3.0

1.947

Table 2

Observed distribution of χ^2 The expected number of values in each range is 10

9

12

8

11

4.0

2.142

Both the chi-square and the mean t in Table 1 were smaller for the restricted q's. This confirms our earlier statement that $F_p(A, B)$ is not approximately Poisson distributed with the mean of Gillies' conjecture when A is small, while it is when A and B-A are large.

It is well known [7, Theorem 2.5] that

$$\prod_{\substack{p \text{ prime} \\ p \leq y}} \left(1 - \frac{1}{p}\right)$$

is the correct probability that a large integer x has no prime divisor $\leq y$, provided $\log y = o(\log x)$ as $x \to \infty$. The analog of this for Mersenne numbers is Gillies' conjecture with $\log B = o(p)$ as $p \to \infty$. The empirical evidence just discussed supports only this restricted conjecture. It does not suggest, nor do we believe, Gillies' conjecture for B as large as $M_p^{1/2}$.

4. The Other Tables. In Table 3 we list all pairs p, k which we found for which 20000 , <math>p and 2pk + 1 are prime, $2pk + 1 > 2^{31}$, and 2pk + 1 divides M_p . We do not list the divisors $< 2^{31}$ because they are too numerous and may be calculated easily. On the other hand, we do list some divisors $> 2^{34}$. For $20000 we searched for divisors of <math>M_p$ up to 2^{35} and when none had been found we went a little further. Table 3 also gives five divisors $2pk + 1 > 2 \cdot 10^{10}$ for 17000 , which do not appear in [2].

Table 3
Pairs p, k for which 2kp + 1 divides M_p

			•	
17851,784760	19081,649599	19681,541559	19759,730296	19763,570493
	20021,696628	20113,762227	20359,140216	20369,140520
20021,618583	•		20627,104784	20641,54395
20369,453787	20441,84988	20479,635145		20983,65613
20641,54911	20663,86532	20939,160021	20939,756841	
20983,179513	21089,74607	21107,60469	21143,856548	21179,64201
21179,36277 2	21313,320331	21377,1272195	21391,272828	21401,348288
21557,661587	21817,599787	21929,118371	21937,163820	21943,94436
21943,607928	22063,312656	22093,190835	22171,343605	22273,105800
22349,722256	22433,541803	22447,300468	22483,113676	22501,67260
22531,149253	22531,473481	22531,520208	22751,110409	22769,171564
22817,1397364	22907,147604	22937,387264	23027,185140	23173,794300
23197,112320	23327,536973	23557,73544	23609,410431	23957,182844
23977,131355	23993,95551	24097,54960	24107,110545	24373,431087
24413,193552	24469,1633587	24697,111687	24851,650484	24979,1596801
			25171,56829	25367,573348
25013,142288	25037,559767	25057,691223		25771,122549
25561,386579	25579,135332	25643,353116	25703,86017	25873,641111
25799,84477	25841,64071	25873,51267	25873,316467	
2 5951,269121	26003,219948	26053,935756	26153,208875	26209,72647
26293,45176	26339,158001	26431,684689	26479,104076	26501,114340
26539,242937	26561,219615	26591,389605	26647,126972	26839,107436
26993,922416	27011,197005	27077,180403	27107,155712	27127,143432
27197,99024	27239,55320	27367,275412	27 4 27 , 305720	27427 , 471500
27481,160848	27653,161667	27737,477040	27779,189772	27803,66748
27817,171972	27967,71225	28001,137643	28097,286708	28123,71472
28219,1635692	28283,66673	28297,285179	28309,122907	28309,432500
28403,67936	28477,181784	28607,45240	28723,105092	28729,80787
28793,525168	29059,171516	29101,693920	29123,1041108	29137,376464
29167,572829	29201,242851	29269,192567	29311,53120	29363,129016
		30011,616468	30089,427999	30109,125939
29759,51904	29837,135900			30469,221831
30313,96392	30319,1411745	30391,221289	30467,164373	30881,346236
30493,899220	30677,1299288	30839,52785	30841,35336	
30941,482875	30949,265895	31121,170059	31219,42932	31219,58749
31481,470568	31489,475499	31567,125648	31573,290628	31627,313184
31667,47973	31687,91773	31687,213612	31699,830457	31769,93687
31873,56928	31883,631392	31963,581441	32059,151604	32159,86356
3 22 57,66059	32299,532944	32303,35341	32303,515892	32323,228116
32327,229425	32377,1424235	32441,35928	32467,1347072	32479,35177
32479,42185	32491,362069	32531 , 387709	32563,57513	32569,1021011
32579,176724	32713,189612	32779,41829	32831,556428	32843,53265
32993,1297648	33023,33556	33029,276367	33071,154509	33349,362291
33349,380636	33353,42012	33353,449547	33413,71032	33563,58101
33589,93375	33589,145547	33703,33848	33857,52804	33863,37653
33863,88581	34123,281117	34127,69745	34127,314064	34147,135072
34159,244236	34211,675621	34337,498744	34351,168564	34457,47724
34471,168441	34591,253793	34673,122532	34739,239880	34883,107116
34897,113472	35107,1013985	35111,183309	35267,271129	35393,36727
35419,448845	35597,291420	35863,89400	35879,136704	35897,880399
		36007,43428	36241,252975	36277,89312
35951,54409	35983,1111697		•	36583,30840
36293,93015	36319,138900	36389,329095	36469,1279991	
36607,368729	36697,487868	36899,82417	36973,64191	36997,175515
37097,302340	37361,171844	37369,330839	37463,162220	37567,528273
37633,191456	37649,139491	37663,137076	37781,150903	37813,140268
37957,246332	38053,998736	38119,136964	38329,91740	38393,72856
38449,93936	38449,209439	38543,83125	38543,259645	38669,223372
38833,130911	38839 , 284657	38861,568804	38933,177768	38953,123891
39181,70596	39181,96768	39191,65373	39209,203316	39233,1282996
39251,32241	39293,53568	39367,971.04	396 07,218420	39623,44221
39679,968609	39799,56861	39827,109572	39847,175524	40031,33733
•	*			

TABLE 3 (continued)

40063,144813	40099,75177	40237,380259	40433,122343	40493,1141348
40577,37492	40597,290655	40637,176584	40693,214052	40697,214248
40699,245732	40787,213592	40813,1002836	40849,50319	41011,46709
41039,353185 41243,158101	41057,323283 41381,1003644	41141,174163	41183,184053 41621,46363	41227,124689 41651,222013
41809,48696	41903,44353	41389,913584 41953,428816	42013,64667	42061,529928
42101,335920	42139,131529	42197,85107	42359,74020	42491,196021
42499,1202361	42643,53472	42697,717623	42853,599495	42979,268704
43003,67745	43261,109724	43397,139435	43451,533353	43753,60476
43783,85376	43801,44615	43889,167715	43891,78416	43963,1022433
43969,80244	44021,24799	44101,26768	44189,150079	44279,74484
44531,78829 44909,33660	44543,42741 44971,337893	44711,138160 45119,57144	44819,434076 45131,129985	44893,33996 45139,506156
45281,469515	45289,112247	45337,47643	45341,52224	45439,933300
45503,123825	45541,187575	45751,598724	45833,251191	45853,29367
45971,33816	45979,40716	46021,42723	46147,125928	46199,133845
46237,54480	46601,129375	46649,24795	46703,36036	46727,76840
46747,402285	46771,169641	46811,54793	46831,37196	46877,81808
46877,145332 47119,706385	46877,201724 47149,111939	46889,55467 47207,796237	47051,165085 47221,234536	47111,181153 47237,161140
47279,30561	47303,378996	47309,55572	47317,45684	47351,67704
47353,444536	47441,66528	47521,74351	47743,31521	47837,400083
47939,31621	48109,177240	48179,37269	48179,43329	48187,648252
48337,126332	48397,41004	48407,1112308	48463,179105	48491,85201
48731,41004	48847,50204	48847,187712	48953,97896	48989,53820
49003,176673	49009,68555	49081,268671	49121,236655	49157,30267
49169,189391	49201,76304	49391,102648 49597,278804	49411,558368 49627,27449	49429,331071
49547,35224 49669,51276	49549,47907 49739,71164	49853,207868	49943,955812	49633,279972 50023,28193
50033,31840	50101,64584	50131,108329	50177,37524	50441,32451
50503,33036	50581,23520	50647,153009	50789,89464	50833,137583
50857,112763	50873,116623	51169,68336	51197,37980	51473,130972
51481,48543 51829,53951	51511,30644 51859,50801	51647,20932 52027,39420	51817,83319 52163,157660	51827,155652 52223,63705
52237,29855	52237,41388	52253,58455	52289,102136	52543,98652
52667,79693	52697,42523	52697,58183	52807,56940	52813,159551
52973,39100	53047,125672	53089,127995	53117,70063	53173,25436
53239,43320	53299,31917	53309,133812	53381,146016	53401,102960
53437,21408	53479,51129	53551,22385	53551,75224	53657,69223
53899,23592 54413,78352	53951,44848 54539,113781	53987,22665 54581,67539	54163,42252 54623,33757	54287,62428 54767,28065
54787,53333	54973,30972	54979,49256	55147,31589	55229,86887
55343,32752	55381,54896	55411,24221	55547,66633	55579,99252
55733,21775	55967,39585	56039,123876	56377,92063	56519,49504
56633,74631	56659,19061	56957,78124	56963,31981	56989,31836
57221,115531 57601,26468	57241,25575 57679,77201	57269,63267	57331,84401	57367,80405
58027,42432	58031,48364	57793,29043 58147,132140	57859,26156 58363,28880	57977,48523 58393,57375
58439,21049	58441,20999	58693,75548	59023,23148	59063,134293
59219,56652	59233,43976	59419,82512	59611,96348	59617,61208
59659,26405	59699,41176	59863,46452	59999,36921	60101,131871
60317,23355	60539,111645	60607,58889	60703,92220	60917,39604
61099,31397 61409,52711	61169,75904 61483,35993	61211,29304 61511,46249	61291,18984 61547,47437	61357,55772 61657,82403
61949,61132	62119,17457	62131,97893	62143,87368	62299,75237
62351,35965	62459,20712	62617,21984	62761,133568	63031,105933
63059,42552	63067,58917	63299,91489	63331,103064	63391,30156
63521,48760	63743,111841	63839,66804	64171,21273	64187,36192

TABLE 3 (continued)

64231,33473 64927,66105 65419,32477 65951,126808 66553,93095 67169,44475 68443,77525 69233,22315 69857,19119 70423,51512 70957,100523 71389,103976 71881,18635 73009,67655 73867,65753 74959,42969 75277,57087 75979,49356 76631,60588 77267,49173 78317,37164 78919,24092 79549,45495 80309,65824 80929,37047 81131,31149 81547,59469 82207,26048 822567,54009 83269,13095 83537,43935 84319,21149 85193,95115 85817,35172 86291,84309 86677,18315 87491,36540 88499,23296 89209,38876 89983,34013 90847,27092 91331,14101 91781,89259 92233,75492 92581,16836 93001,27863 93011,27863 93011,27863 93017,78748 94261,63356 94603,45441 95107,56300 95479,54281 95929,52284 96259,22001	64301,84288 65101,57008 65713,53195 66041,60804 66601,70131 67189,53369 68699,18697 69497,18879 69859,16557 70429,83580 70999,16065 71471,15609 71993,14568 75079,19880 75391,83385 76123,24428 75673,30288 77369,77119 78439,95189 79193,71652 79693,27780 80387,6123,24428 81131,80509 81619,38412 82421,27444 82727,59833 83269,48764 83719,16961 84437,25024 85199,24117 85889,44871 86321,71193 87517,73292 88513,27908 89237,16984 90401,5191 8671,773292 88513,27908 89237,16984 90401,5191 91019,15316 91807,29169 92237,74392 92699,16357 93059,17245 93563,18153 94057,19415 94421,80319 94651,36564 95701,43991 95987,20433 96259,51201	64783,55196 65101,131280 65809,21155 66271,63365 66713,68080 67481,100939 68881,58184 69677,22932 69877,71592 70501,101840 71287,27117 71837,92272 71999,36157 73379,44629 74177,58308 75083,73737 75533,35935 76379,84816 77003,26556 77419,18360 78539,65464 79229,57400 79867,41849 8047,72793 81031,14724 81233,20076 81727,22709 82483,30972 82913,55465 83773,8707 84731,12865 83299,46265 83773,8707 84731,12865 85297,74232 85999,46740 86357,42108 86861,27024 87523,55757 88799,49869 89371,30093 90703,42848 91099,17061 91573,27611 91951,16008 92269,24567 92821,15000 93133,12627 93761,24520 94153,75696 94541,11724 94849,22919 95177,23835 95737,84623 96017,36748 96329,78336	64817,92968 65239,117101 65843,33025 66347,90360 66721,98355 67867,36725 69073,16716 69829,28508 70717,15687 71287,59732 71843,15381 72481,139 73589,103932 74177,65019 75167,33049 75797,20763 76481,90100 77137,23520 78203,17968 78713,46003 79319,27720 80141,40515 80603,41553 81049,2762 81281,36543 82009,15807 82487,40929 83063,38848 83311,70269 84067,18552 84751,39965 85597,27648 80077,76559 84067,18552 84751,39965 85597,27648 8077,76559 84067,18552 84751,39965 85597,27648 8077,76559 84067,18552 84751,39965 85597,27648 80077,76559 84067,18552 84751,39965 85597,27648 80077,76559 84067,18552 84751,39965 85597,27648 8969,87051 89809,16536 90833,72000 91121,59460 91573,38087 92077,13583 92353,20736 92861,13680 93257,12684 93851,48804 94229,22635 94543,16773 94999,44712 95203,17888 93851,48804 94229,22635 94543,16773 94999,44712 95203,17888 93851,48804 94229,22635 94543,16773 94999,44712 95203,17888 93851,48804 94229,22635 94543,16773 94999,44712 95203,17888 96451,16184	64901,77388 65327,122589 65921,18579 66463,44672 66949,68276 68071,52229 69149,31527 69833,83680 70229,45412 70729,29027 71339,77556 71867,35257 72661,03620 73757,80904 74779,22509 75217,93548 75821,38620 76493,48687 77171,30069 78283,23552 78853,56432 79399,39672 80231,14628 80677,18860 81119,31024 81401,17340 82153,30575 82567,16205 83267,16368 85081,97215 85711,29720 86131,29393 86453,72600 87281,38256 8751,45345 89083,18060 89819,17784 90847,12900 91291,66540 91703,68541 92119,42597 92413,20747 92893,21756 93419,81421 93901,58463 94253,54435 94561,54096 95027,15417 95393,42072 95891,34993 96149,22152 96769,20396
94603,45441 95107,56300 95479,54281 95929,52284	94651,36564 95131,61149 95701,43991 95987,20433	94849,22919 95177,23835 95737,84623 96017,36748	94999,44712 95203,17888 95881,18423 96043,61392	95027,15417 95393,42072 95891,34993 96149,22152

TABLE 4

Primes p for which no divisor of M_n is known

```
50069,087,111,119,123,153,221,227,231,261,263,273,287,329,341,359
50383,417,461,513,543,551,599,683,723,741,753,767,821,839,929,951
50957,969,989,993,001,031,043,047,059,061,071,151,193,217,229,257
51263,307,341,347,349,407,421,427,431,437,439,449,479,487,517,551
51563,577,581,599,607,613,637,679,691,749,767,853,869,871,899,907
51913,929,941,949,971,973,991,009,021,051,081,177,183,267,301;313
52321,363,369,391,457,489,501,517,529,541,561,579,609,639,673,711
52721,747,757,769,859,889,901,903,963,967,999,003,017,077,101,113
53129,147,189,197,201,231,267,279,323,327,407,453,503,507,527,549
53569,593,611,623,629,653,681,777,813,819,857,881,887,917,939,959
53993,001,013,049,059,139,151,167,269,277,293,311,319,323,331,347
54361,371,377,401,403,409,419,421,437,449,493,497,499,517,547,563
54583,617,629,647,673,709,713,727,751,773,833,851,869,881,907,919
54941,949,983,021,057,061,079,117,127,163,201,213,243,259,313,331
55337,351,399,469,487,501,511,529,589,609,667,681,697,763,787,807
55817,819,823,829,837,849,889,903,009,041,053,101,113,131,149,197
56207,237,239,267,269,299,311,333,359,401,417,431,443,453,473,477
56489,509,527,533,543,591,597,611,629,681,687,711,731,737,747,767
56779,807,813,827,843,873,893,897,909,911,921,941,041,059,073,089
57139,143,149,163,179,191,193,223,259,283,287,301,349,383,389,397
57413,457,487,503,557,559,587,593,637,641,697,709,713,719,737,773
57803,829,847,853,881,901,917,923,943,973,991,043,057,099,109,111
58193,199,207,217,367,369,379,391,403,453,477,481,537,543,549,613
58631,687,699,711,727,733,741,757,763,771,789,889,897,907,913,937
58943,011,051,053,083,107,113,149,159,167,183,197,207,209,239,243
59263,333,357,377,387,393,443,467,471,473,497,557,567,581,627,629
59651,671,693,729,747,753,771,779,797,887,929,957,971,013,029,089
60091,103,107,149,161,167,169,209,257,259,271,289,293,337,353,413
60427,443,449,493,497,521,601,611,617,623,637,649,661,679,727,733
60737,757,763,811,821,869,889,899,901,953,007,027,031,043,051,057
61091,121,151,223,253,297,339,363,379,417,463,469,471,487,493,519
61543,553,583,603,631,643,667,673,681,687,729,781,813,819,837,843
61861,879,909,927,933,967,979,987,003,017,047,053,129,141,207,233
62273,303,311,327,347,383,483,501,533,539,549,597,633,653,659,683
62687,723,731,773,801,827,869,903,927,929,939,983,987,029,113,127
63149,197,199,211,241,277,313,337,353,377,397,443,467,487,527,533
63541,559,589,599,601,617,647,649,659,667,689,691,697,709,781,809
63823,841,853,857,901,907,929,949,977,007,013,019,063,067,091,109
64217,223,237,279,319,327,373,381,399,403,433,453,483,489,499,553
64579,591,601,609,613,621,633,661,679,717,747,781,811,849,877,879
64937,969,003,011,027,029,053,071,089,119,123,129,141,179,203,213
65257,267,269,287,293,309,323,371,393,413,423,447,479,519,521,537
65539,543,557,563,629,633,647,687,699,701,717,719,729,731,761,777
65831,839,929,957,993,029,037,047,083,089,103,107,109,137,161,169
66173,179,221,239,343,359,361,377,413,449,457,467,491,499,509,523
66541,617,643,653,683,733,751,797,841,853,863,883,889,919,923,931
66943,947,973,033,121,129,141,181,211,213,217,219,231,247,273,289
67307,343,369,421,427,433,453,477,537,547,601,607,619,631,651,679
67733,751,757,763,777,783,789,807,843,853,901,927,931,933,939,957
67961,967,979,987,993,023,059,087,099,141,161,207,209,213,219,227
```

TABLE 4 (continued)

```
68239, 261, 281, 311, 329, 371, 473, 477, 483, 491, 501, 507, 521, 531, 581, 597
68659,669,683,687,711,713,743,749,777,791,813,821,863,879,891,899
68903,927,947,993,011,019,029,031,061,067,143,151,191,193,197,239
69257,317,337,341,371,383,427,493,499,557,653,691,697,709,739,761
69763,767,821,847,899,929,931,003,009,019,051,061,099,111,117,123
70139,141,157,177,181,183,207,237,249,297,321,381,457,459,487,529
70537,583,607,619,663,667,687,753,769,783,823,841,843,849,867,877
70879,913,949,951,969,991,011,039,069,081,119,129,143,147,167,191
71209, 233, 249, 257, 261, 263, 293, 327, 329, 333, 353, 411, 419, 437, 443, 453
71473,479,483,549,551,563,569,593,633,663,693,699,707,711,719,741
71789,807,821,849,861,887,899,909,917,933,941,963,983,987,043,047
72077,091,109,161,169,221,229,269,271,277,307,337,353,379,421,431
72461,467,469,493,559,643,649,673,679,689,701,707,727,733,739,797
72817,859,883,889,893,923,931,949,953,997,019,037,043,079,091,121
73133,181,237,243,277,303,309,327,331,361,369,417,421,433,471,483
73517,561,583,607,609,637,643,673,679,699,709,783,819,847,859,883
73897,907,939,999,017,021,047,071,131,149,159,167,189,201,209,231
74257,279,287,297,317,323,377,381,383,441,449,453,471,489,531,551
74573,597,611,623,653,687,717,747,857,861,869,891,903,923,933,941
75011,029,193,209,223,227,239,289,307,323,329,377,401,403,407,431
75527,539,553,557,571,577,619,629,653,659,689,703,709,731,773,787
75793,869,883,931,937,989,991,997,003,039,099,129,147,159,231,243
76253,261,343,367,387,403,421,441,471,507,537,541,543,603,607,649
76697,733,777,801,829,837,847,873,949,963,991,029,041,047,101,141
77191,239,249,263,269,279,291,317,339,383,417,477,489,509,527,557
77563,569,573,621,647,687,689,713,719,723,731,743,747,761,801,849
77863,893,899,969,999,041,049,079,179,193,229,233,241,259,301,347
78401,437,467,479,487,497,517,541,553,569,571,577,583,593,607,643
78649,691,697,721,737,787,797,823,857,877,901,929,977,989,031,039
79043,063,103,133,139,147,153,181,241,273,279,309,333,349,357,393
79427,433,451,531,537,579,589,609,621,627,631,657,669,687,699,757
79777,801,813,817,823,843,847,861,901,907,943,979,051,107,149,153
80167,177,207,233,239,263,287,341,363,407,429,449,513,567,599,611
80627,629,657,669,671,713,737,777,779,783,803,809,849,863,909,911
80917,923,933,989,047,163,173,181,197,203,239,283,293,299,307,331
81371,373,409,421,439,457,509,533,553,637,647,649,667,671,677,689
81701,737,749,769,869,901,919,929,937,943,967,971,973,003,007,013
82021,031,037,039,051,073,141,163,171,189,219,241,261,267,339,373
82387,463,493,507,529,531,549,559,571,601,619,633,657,699,721,723
82759,781,793,813,837,883,889,891,939,023,059,089,093,101,117,177
83203, 207, 219, 227, 231, 233, 273, 383, 389, 443, 449, 561, 563, 591, 597, 609
83621,663,717,737,761,777,791,813,833,869,873,891,911,921,987,053
84127,137,143,163,179,181,191,199,347,377,389,391,407,457,467,509
84521,559,589,631,649,697,701,713,719,737,761,811,857,859,869,871
84913,967,009,027,037,049,091,093,121,147,159,201,259,303,313,331
85333,363,369,381,447,451,469,549,577,619,627,661,667,703,717,733
85781,819,831,843,847,909,933,011,083,113,117,161,197,209,239,243
86249,269,311,351,371,389,399,441,467,491,509,531,561,573,579,587
86599,627,629,689,693,719,743,813,851,923,927,951,959,993,011,013
87037,041,049,103,121,149,151,179,187,211,221,251,253,257,317,359
```

TABLE 4 (continued)

```
87403,407,443,481,547,553,557,559,589,623,631,641,649,671,679,691
87697,719,739,743,767,811,877,887,931,943,973,977,001,007,019,069
88117,169,177,223,237,241,261,321,339,379,397,423,427,469,493,609
88651,661,663,667,681,721,741,747,771,789,793,817,819,843,867,873
88883,897,937,951,017,041,057,069,101,107,137,203,213,227,231,261
89269,273,293,303,317,387,393,413,431,443,449,477,491,501,519,527
89533,561,563,567,591,599,603,611,627,633,653,659,669,671,681,689
89767,783,797,821,833,839,891,899,909,939,959,963,977,001,017,019
90023,031,053,059,067,071,073,089,107,121,149,163,173,187,199,203
90217, 227, 247, 263, 281, 289, 313, 371, 379, 397, 403, 407, 437, 439, 473, 511
90533,547,583,631,641,647,679,709,731,749,787,823,841,863,887,911
90917,931,997,009,081,097,127,153,193,237,243,249,253,297,309,367
91369,373,387,411,423,459,493,513,529,621,711,801,811,813,823,841
91909,921,939,943,957,967,009,033,041,051,083,143,153,173,177,179
92221,227,311,317,377,381,387,399,401,419,431,503,507,557,567,569
92593,623,627,639,641,647,657,671,681,707,717,737,761,779,791,809
92849,857,863,867,899,921,927,941,959,993,077,083,097,103,131,139
93179,187,229,251,263,281,283,287,307,329,337,377,383,407,463,491
93493,553,557,581,601,607,629,637,701,703,739,809,811,871,887,889
93913,923,937,941,949,967,997,009,049,109,111,121,201,207,273,307
94309,321,327,331,349,351,379,397,433,439,441,447,529,583,613,621
94649,723,727,777,793,811,819,823,837,873,889,933,003,021,071,087
95089,101,143,153,189,191,233,239,261,311,317,327,369,383,401,413
95441,443,461,467,471,483,507,527,531,549,597,617,621,633,717,731
95747,783,803,813,869,911,923,947,971,989,013,059,079,097,137,157
96167,181,199,221,223,263,269,293,323,331,337,353,377,401,419,431
96457,461,469,479,487,493,497,517,587,671,703,739,749,757,763,797
96799,823,847,893,907,911,931,959,973,997,001,003,073,103,127,169
97231,301,327,367,369,373,379,381,387,423,429,453,459,463,499,547
97579,607,609,651,673,687,711,777,787,789,813,841,847,849,861,919
97927,961,973,011,041,047,081,143,179,207,221,251,269,299,321,323
98327,369,389,411,443,479,543,561,563,597,663,717,729,737,849,869
98873,887,899,909,911,927,929,947,953,993,041,053,089,103,109,119
99131,133,137,149,173,223,233,257,277,317,349,409,431,497,523,529
99577,581,611,679,689,707,719,721,761,767,793,809,823,829,833,877
99881,901,923,929,971,989
```

Several years ago when we made available a list of divisors of M_p for 17000 $, Noll and Nickel [9] and Slowinski [12] were inspired to search for Mersenne primes within this range and found three new ones. To provide further inspiration we present in Table 4 the 2166 primes <math>50000 for which <math>M_p$ has no divisor $< 2^{34}$. The first prime in each row is written in full; only the low-order three digits of the other primes are shown. According to the second consequence (II) we should expect that M_p is prime for about 1.78 of the primes in Table 4.

The author is grateful to the University of Illinois for providing the computer time used in this project. He thanks Professor Robert Bohrer for suggesting the secondary chi-square test.

Department of Mathematics University of Illinois Urbana, Illinois 61801

- 1. PAUL T. BATEMAN & ROGER A. HORN, "A heuristic asymptotic formula concerning the distribution of prime numbers," *Math. Comp.*, v. 16, 1962, pp. 363–367. MR **26** #6139.
- 2. JOHN BRILLHART, "On the factors of certain Mersenne numbers, II," Math. Comp., v. 18, 1964, pp. 87-92. MR 28 #2992.
- 3. CHERWELL, "Note on the distribution of the intervals between prime numbers," *Quart. J. Math. Oxford*, v. 17, 1946, pp. 46–62. MR **8**, 136.

- 4. CHERWELL & E. M. WRIGHT, "The frequency of prime patterns," Quart. J. Math. Oxford (2), v. 11, 1960, pp. 60-63. MR 24 #A98.
- 5. John R. Ehrman, "The number of prime divisors of certain Mersenne numbers," *Math. Comp.*, v. 21, 1967, pp. 700-704. MR **36** #6368.
- 6. DONALD B. GILLIES, "Three new Mersenne primes and a statistical theory," *Math. Comp.*, v. 18, 1964, pp. 93–97. MR **28** #2990.
- 7. H. HALBERSTAM & H. E. RICHERT, Sieve Methods, Academic Press, New York, 1974. MR 54 #12689.
- 8. H. W. LENSTRA, JR., "Primality testing," Studieweek Getaltheorie en Computers, Sept. 1-5, 1980, Stichting Math. Centrum, Amsterdam.
- 9. Curt Noll & Laura Nickel, "The 25th and 26th Mersenne primes," *Math. Comp.*, v. 35, 1980, pp. 1387–1390.
- 10. G. Pólya, "Heuristic reasoning in the theory of numbers," *Amer. Math. Monthly*, v. 66, 1959, pp. 375–384. MR 21 #3392.
- 11. Daniel Shanks & Sidney Kravitz, "On the distribution of Mersenne divisors," *Math. Comp.*, v. 21, 1967, pp. 97–101. MR 36 #3717.
- 12. DAVID SLOWINSKI, "Searching for the 27th Mersenne prime," J. Recreational Math., v. 11, 1979, pp. 258–261. MR 80g; 10013.
- 13. G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, Fourth ed., Clarendon Press, London, 1960.